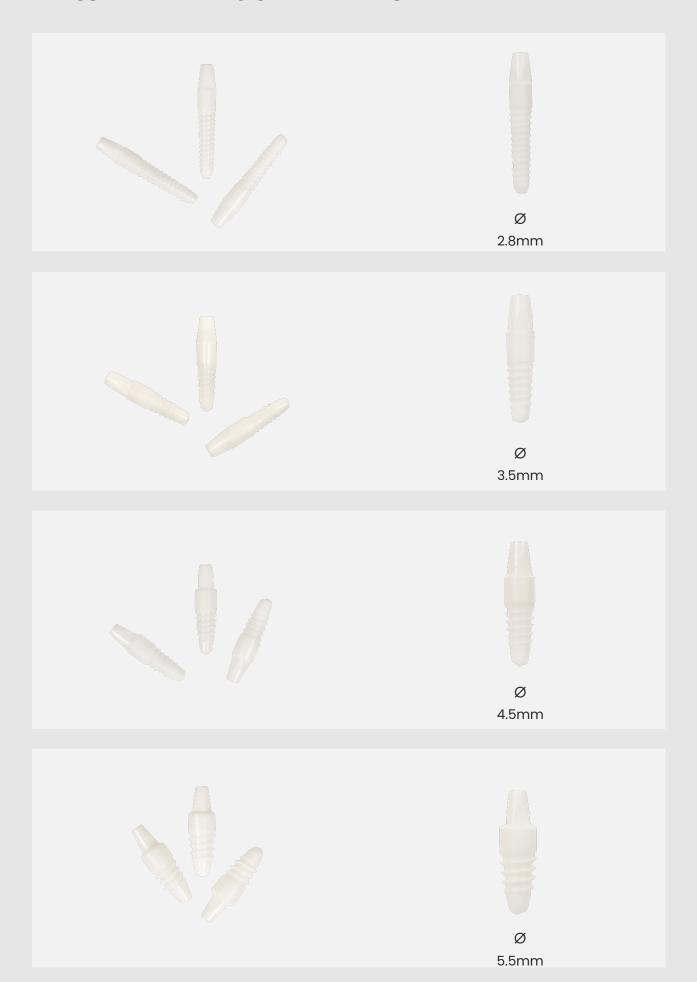
QONECERA

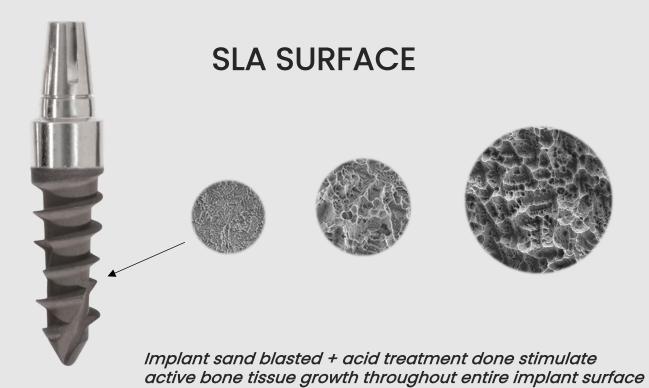
Simple is The Best
One Step Fusion Implants

About ONECERA Implants

The immediate loading capability of the ONECERA Fusion Implant is attributable to two critical factors: its principle of bicortical penetration, which ensures secure anchorage in both cortical bone layers, and its construction as a one-piece monolithic system, which features an integrated abutment at the top of the implant. This design eliminates the need for a separate abutment and provides enhanced stability and functionality.


One Step Fusion Implants

As a single-piece system, the One Fusion Implant has the benefit of being more compact than traditional multi-piece implants. This is because it does not require the wider well needed for abutment placement. By taking up less space, the implant reduces bone loss and therefore shortens the time needed for bone healing.


Biocortical

Unlike traditional multi-piece implant systems, the One Fusion Implant is designed to be anchored between both cortical bone sites in the jawbone. This setup offers exceptional primary stability, as the cortical bone can immediately bear a substantial load, unlike the less stable trabecular (cancellous) bone. Since the implant does not require bone healing or initial stability, patients can comfortably chew and apply pressure to the implant site.

ZIRCONIA IMPLANTS ON FDA APPROVAL

ONECERA IMPLANT

A GAP FREE ONE PIECE TITANIUM IMPLANT

ATRAUMATIC ONE-PHASE CONCEPT

IMMEDIATE TEMPORISATION & IMMEDIATE LOADING POSSIBILITIES

EASY TO FOLLOW TREATMENT SEQUENCE

CLEARLY ARRANGED TITANIUM INSTRUMENTS

CONCEPT

This affordable implant system was created to meet various needs in implant dentistry. Engineered for ease of use and clarity, it overcomes many of the drawbacks associated with older implant systems. Constructed from titanium, this single-phase endosseous implant is free of complex components.

The self-cutting thread provides excellent primary stability, facilitating the immediate placement of a temporary crown. The transgingival healing method eliminates the need for a second surgical procedure, while the sandblasted surface speeds up osseointegration. Additionally, the mirror-finished implant head supports wound healing and minimizes the risk of post-operative infections.

THE IMPLANT HEAD

The implant features a 6° cone design at its top, which allows it to be precisely ground and treated similarly to a natural tooth. To prevent rotation, it includes four symmetrical axial slots. These slots not only guide the wrench for implant insertion but also support the installation of a temporary suprastructure.

Before taking impressions, the slots should be filled with composite material. With the use of a dental dam, the top can be ground during or immediately after surgery. The mirror-finished surface aids in managing mucosa and gum, enabling your patient to leave your office with both an aesthetic and functional solution on the same day as the surgery.

THE THREAD

ONECERA Implants feature a self-cutting thread that enables gentle bone management and atraumatic insertion with minimal force. These implants provide high primary stability even in the spongy bone of the upper jaw. We focused extensively on creating a progressively designed thread with axial milling cuts to minimize stress and strain.

This design ensures that jaw pressure is distributed evenly across the bone and helps prevent rotation. Additionally, bone shavings can be collected and reused during the osteogenesis process.

THE SURFACE

ONECERA Implants feature a sandblasted, large grit, acid-etched surface (SLA) designed to enhance osseointegration by increasing bone-to-implant contact (BIC). The SLA process combines grit blasting and acid etching to create a rough surface that promotes osteoblast proliferation and adhesion. This leads to improved stability and longevity of the implant. By increasing the surface area, we further enhance osteoblast activity and cellular adhesion, resulting in more effective osseointegration.

Advantages of ONECERA Fusion Implants

- 1. Streamlined Design: A single-piece implant with no joints.
- 2. Integrated Structure: The implant and abutment are fused into one piece, eliminating microgaps that can reduce bone loss and prevent odor.
- 3. Efficient Procedure: Often performed in a single visit and usually flapless, avoiding open surgical procedures. The process is quicker than traditional bridgework.
- 4. Immediate Loading: Crowns or bridges can be placed on the same day as the implant.
- **5. Conventional Impressions:** Impressions can be taken just like with traditional bridgework, saving time.
- 6. Versatile Options: Available in various sizes and designs to fit different bone types and measurements, potentially reducing the need for bone augmentation and sinus lifts.
- 7. Cost-Effective: Generally more affordable than two- or three-piece implants.
- 8. Efficient Placement of Prosthetics: Crowns and bridges can be cemented in place within a day.
- 9. No Abutment Screw Issues: Eliminates problems with abutment screw loosening due to the absence of separate screw-implant assemblies.
- 10. Self-Drilling and Stable: Provides strong initial loading with self-drilling capability.

System Specifications

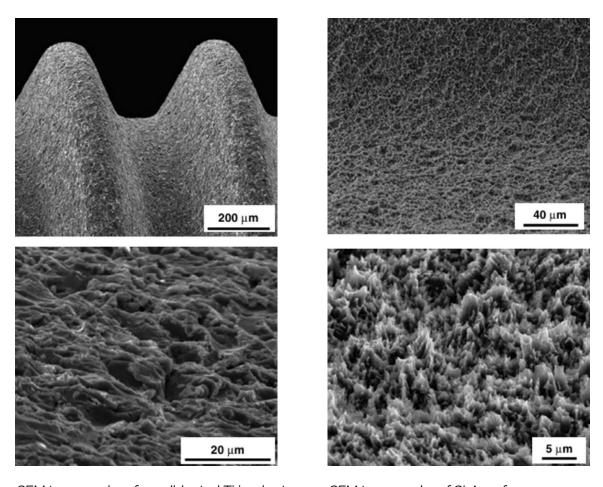
The immediate loading capability of the ONECERA Fusion Implant is attributed to two key factors:

the principle of bicortical penetration and the fact that the ONECERA implant is a onepiece monolithic system with an integrated abutment at the top.

Bicortical:

Unlike traditional multi-piece implant systems, the ONECERA Fusion Implant is designed to be anchored between both cortical bone sites in the jawbone. This setup offers exceptional primary stability, as the cortical bone can immediately bear a substantial load, unlike the less stable trabecular (cancellous) bone. Since the implant does not require bone healing or initial stability, patients can comfortably chew and apply pressure to the implant site.

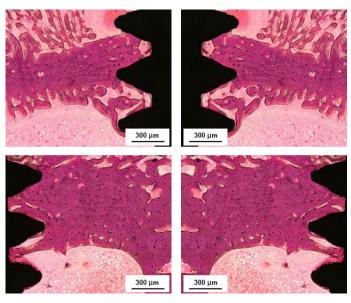
Single-Piece Implant System:


As a single-piece system, the ONECERA Fusion Implant has the benefit of being more compact than traditional multi-piece implants. This is because it does not require the wider well needed for abutment placement. By taking up less space, the implant reduces bone loss and therefore shortens the time needed for bone healing.

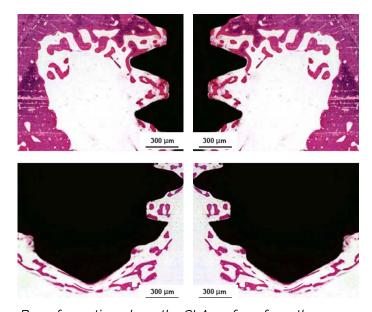
Surface

S.L.A. Surface for faster osseointegration

•200% enhanced surface area compare to RBM surface
•Effective & Excellent Osseo-integration
•Lowest level of Residues


SEM topography of sandblasted Ti implant.

SEM topography of SLA surface.


The ONECERA Implant System is a singlepiece implant designed to connect directly to the bone at its apical end, providing exceptional primary stability due to its integration with the cortical (basal) bone.

Optimized Surface for Bone Integration IMPLANT SYSTEM

The system's integrated superstructure allows One-Step Fusion Implants to endure greater forces, eliminating issues such as neck fractures, screw loosening, and screw breakages commonly associated with multi-piece implants.

Histological image of new bone apposition over the implant surface at four weeks.

Bone formation along the SLA surface from the cortical bone to the apex.

ONECERA IMPLANT SURFACE offers several notable benefits, including:

- Strong Long-Term Performance: Various studies have demonstrated the consistent reliability of SLA implants over time.
- Reduced Healing Time: Research indicates that SLA implants can expedite the healing process.
- Low Prevalence of Periimplantitis: Evidence suggests that patients with SLA implants experience a low incidence of peri-implantitis.
- •High Survival Rates: Research shows that SLA implants achieve high survival rates, with some studies reporting rates of 95.1% after 10 years.

The surface of a dental implant is essential for its durability and bone fusion, as the shape, structure, and surface characteristics all contribute to its stability.

ONECERA surgery steps

1. Mucosal surgery:

Using a scalpel, the mucosa is opened by a crestal cut. A fold of skin is then built to uncover the osseous structures. Alternatively a gum punch can be used.

2. Initial indentation of the bone:

Use a rotating drill to create an indentation on the surface of the bone. Alternatively use a trocar drill to punch the mucosa if flapless surgery technique is applied.

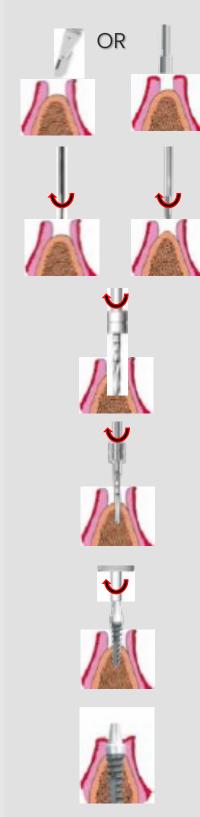
3. Pilot drill:

Considering both of optimal prosthetic and enossal position of the implant, the right direction of the pilot drill is chosen.

4. Shaping drill:

The shaping drill is performed with the selected diameter and length.

5. Insertion:


Taken from the sterile cover the implant is gently inserted into the prepared bone cavern with the insertion wrench. It may be helpful to use the handwheel or the handwrench. By its selfcutting design the implant gains maximum primary stability.

6. Suture:

After reaching the implants final position, the mucosa is stitched up tightly. This is not necessary if a gum punch was used.

7. The suprastructure:

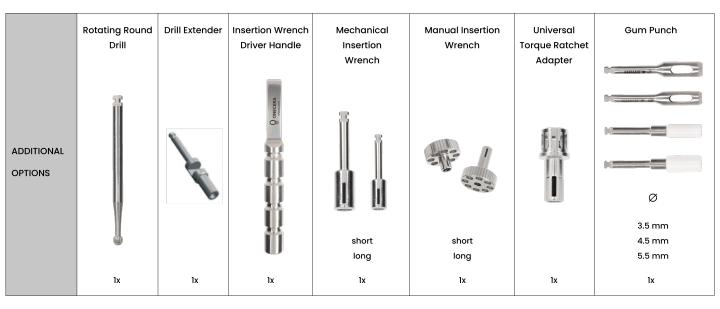
A temporal suprastructure is recommended during the healing phase by means of using a MultiCap+ or a Silicone Cap. The final prosthetic suprastructure follows.

QNECERA

IMPLANT SYSTEM

The ONECERA Box was designed for clarity and simplicity. It can be easily stacked into an autoclave and its sturdy construction ensures stability even following many sterilisation procedures. Every system component has its own unmistakeable place making it easy for the operating assistant to locate the correct component quickly and efficiently. The titanium bowl can be used for blending bone augmentation material as well as the temporary storage of operating instruments.

	Pilot Drill	Pilot Drill	Shaping Drill	Shapi Dril		
STERIBOX COMPLETE WITH INSTRUMENTS	Ø 1.8 mm	Ø 1.8 mm	Ø 2.3 mm	Ø 3.5 m		short long
	Mechanical Insertion Wrench	Drill Driver Handle Torqu		Universal Torque Ratche Adapter	Gum Punch	
				О омесена		Ø 3.5 mm 4.5 mm 5.5 mm
	lx	lx		lx	lx	1x


ONECERA Implant

In every case ONECERA-Implant®

The ONECERA Implant product range suits all indications. Such as single tooth treatment and bridges, increasement of pillars in reduced set of teeth and in edentulous jaws. It might be loaded immediately after tooth extraction and serves perfectly for immediate suprastructure, because of the high primary stability that is achieved by its very specific thread design.

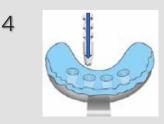
ONEQ Implant, the implant system of the present and future!

- a popular and effective
- one-phase concept
- ideal for immediate temporisation and immediate loading
- Two different neck heights; Standard (4 mm) and angle (20 degrees)
- in diameter 2,8; 3,5; 4.5; 5,5 mm
- and length 8, 10, 12 or 14 mm available

Prosthetic Procedures

Once wound healing is complete and there is no inflammation in the mucosal area, the prosthetic process can begin. If the implant heads have been ground, the prosthetic shaping is carried out using conventional methods. Typically, the slots in the implant head are filled with composite material, and a standard dental impression is taken. The laboratory model and the dental transformation process are similar to those used for a ground natural tooth.

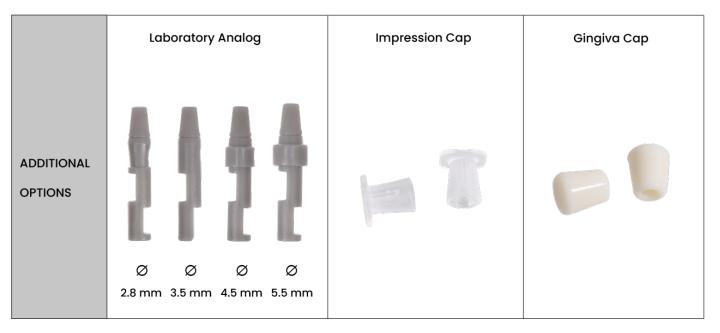
0000


If the implants head are not grinded the use of MultiCap+ is recommended. This multifunctional cap is shifted onto the implants head and the impression made with an impression spoon.

2

The laboratory implants (ONE2 / ONE3 / ONE4 / ONE5) are now inserted into the Muticap+ which are sticking in the impression material for casting the model. Finally the technical laboratory work can be performed in usual manners.

3


The choice of a thermoplastic synthetic material gives the dental technician the possibility to use the MultiCap+ as a burn-out basis for a variety of dental applications. MultiCap+ has a uniform material strength due to its conical shape and constant thick-ness. Several laboratory steps are considerably shortened by using these prefabricated moulds. MultiCap+ burns out completely at 850°c (1562°F) without residues, which allows the use of a wide variety of alloys. Weight In gold approx. 0,8 g (12,35 gr.), which allows for no waste!

After the processing of the model all prosthetic possibilities are available. (e.g. ceramics full bridge)

5

